Code: 20IT4501E

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

DATA MINING (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

	UNIT-I	BL	СО	Max. Marks			
1	Explain the different types of data that can be mined in data mining. Discuss in detail the various patterns that can be discovered through data mining techniques. Include examples for each type of pattern to illustrate their practical applications.	L2	CO1	14 M			
	OR						
2	Discuss the major technologies used in data mining and how they contribute to the process of extracting valuable information from large datasets. Additionally, analyze the key applications of data mining across different industries and the major issues and challenges faced in the field.	L2	CO1	14 M			
	UNIT-II						
3	Analyze the different methods used to measure data similarity and dissimilarity. Discuss the	L3	CO2	14 M			

	sign	nificance of	these measures in tasks like					
		stering, and						
		clidean distar						
similarity and Jaccard similarity with examples. OR								
4								
-		representing						
		term-docum						
			nt A: [3,0,2,5]					
			nt B: [1,1,3,2]	L3	CO2	4 M		
			the cosine similarity between			-T 1V1		
			A and Document B. Interpret the					
			ms of the similarity between the					
		two docume	•					
	b)			L3	CO2	10 M		
	b)		ajor tasks in data pre-processing	L3		10 W1		
			issues to consider during data					
		integration.						
			UNIT-III					
5	Giv	en the follow	ving transaction dataset, use the					
	Apı	riori algorith	m to find all frequent itemsets					
	wit	h a minimu	m support threshold of 50%.					
	The	en, generate	all possible association rules					
	froi	m these freq						
	con	fidence thres	1.2	002	1 1 3 4			
	Tra	insaction ID	Items Purchased	L3	CO3	14 M		
	1		Bread, Milk, Butter Bread, Milk, Cheese					
	2							
	3							
	4							
	5							
	6		Bread, Milk, Butter, Cheese					
			OR					

6	Discuss the concepts of frequent parassociation rule mining, and parapproaches. Explain how the April and the FP-Growth algorithm dismethodology for finding frequency Additionally, analyze the strandard weaknesses of both algorithms and circumstances one might be prefer other.	attern growth dori algorithm iffer in their ent itemsets. The rengths and do under what	L3	CO3	14 M
	UNIT-1	IV			
7	Discuss the concept of decision to in classification. How does the learning process work, and what criteria used for splitting the data and Additionally, mention the structure weaknesses of decision tree classificant.	L3	CO3	14 M	
	OR				
8	2 Sunny Hot High 3 Overcast Hot High 4 Rainy Mild High 5 Rainy Cool Normal 6 Rainy Cool Normal 7 Overcast Cool Normal 8 Sunny Mild High 9 Sunny Cool Normal	mation Gain the process, entropy and	L3	CO3	14 M

	11 Sunny	Mild	Normal	True	Yes					
	12 Overcast	Mild	High	True	Yes					
	13 Overcast	Hot	Normal	False	Yes					
	14 Rainy	Mild	High	True	No					
	UNIT-V									
9	Illustrate the principles and differences between									
	partitioning methods and hierarchical methods									
	in cluster analysis. How does the K-means					L3	CO3	14 M		
	algorithm work, and what are its strengths and									
	weaknesses compared to hierarchical clustering									
	methods such as agglomerative clustering?									
			Ol	R						
10	Given the f	ollowi	ng data poin	ts, perfo	orm K-					
	means cluste	ering w	with $k=3$. Sho	w each	step of					
	the algorithm, including the initial assignment									
	of centroids, the assignment of data points to									
			ulation of cer	-						
	final clusters.									
	Data Point	X	Y							
	A	1	2			L3	CO3	14 M		
	В	1	4							
	С	3	2							
	D	5	8							
	E	6	6							
	F	8	8							
	G	7	6							
	Н	9	7							
	11	J	1							